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Abstract

A study concerning the flow of a Newtonian fluid through a porous medium for the particular case natural convec-

tion is produced by hot and cold spots placed in the solid phase is presented. Results involving the interaction of forced

convection with thermal spots are reported to visualize the mechanisms associated with the generation of complex flow

patterns in the porous medium. For this purpose the computation of a two-field model is carried out. Two systems are

studied: one is a rectangular porous cavity (RPC) of square cross section and the other is an annular porous cavity

(APC) comprised by two concentric vertical cylindrical walls. It is shown, in general, that the flow patterns associated

with each configuration and intensities of the thermal spots may be qualitatively inferred by following rules that are

established through a basic study of mixed convection in the RPC.
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1. Introduction

At present, the evaluation of the velocity field and the

heat flux, both generated by natural and forced convec-

tion in a porous medium containing cold and hot spots

of variable intensity, is a relevant subject of practical

interest. Multiple technological applications in different

industrial equipments and electronic devices require

the detailed knowledge of velocity and temperature

fields under this particular situation. For instance, it

has been reported that the quality of grain and cereal

storage and drying in silos is affected by the generation
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of hot spots in the granular bed, which are caused by

fungal growth and grain germination, among other nat-

urally occurring phenomena [1,2]. Also, flow maldistri-

butions may induce hot spots in packed-bed reactors

as a consequence of destabilization of the basic uniform

flow typically assumed in designs; thus, the effective con-

version of reactants may be quite different from the

nominal value expected, usually with an inhomogeneous

product due to undesired side reactions [3,4]. In similar

systems, strongly localized stationary and traveling hot

spots arise when changes in gas velocity occur in the cat-

alytic combustion of hydrogen in monolith reactors [5].

Another challenging problem involves thermal control

by appropriate air cooling of integrated circuits, which

are at present configured under significant miniaturiza-

tion and reduction of spaces between them [6,7]. Thus,
ed.
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Nomenclature

a thermal dispersion coefficient

av specific surface of porous medium, m�1

b Forchheimer inertial constant, m

C0
f fluid heat capacity at constant pressure, J/kg

K

dp particle diameter, m

D width of porous cavity, m

Da Darcy number (=K1/D2)

Fs Forchheimer number (=b1/D)

g gravity acceleration, m/s2

G0 dimensionless source or sink intensity

(=S0D
2/DTkm1)

Gr Grashoff number (=ðq0f Þ
2gbK1DDT=ðl0f Þ

2
)

hf fluid heat-transfer coefficient, W/m2 K

hs solid heat-transfer coefficient, W/m2 K

hsf solid–fluid heat-transfer coefficient, W/m2 K

H Sparrow number (=hsfD
2av/km1)

I unity tensor

ka thermal conductivity, W/m K (a = s, f)

km stagnant thermal conductivity of the satu-

rated porous medium, W/m K

k�d dimensionless thermal dispersion tensor

K permeability of the porous medium, m2

lc characteristic length for heat transfer in the

solid phase, m

L height of the porous cavity, m

Pe Peclet number (=U1D=a0f )
Prf fluid Prandtl number (=C0

f l
0
f =k

0
f )

Qh dimensionless heat flux at the hot wall,

defined by Eq. (7)

Qc dimensionless heat flux at the cold wall,

defined by Eq. (8)

ri inner radius of porous cavity, m

ro outer radius of porous cavity, m

rv (=V= bV )

Ra Rayleigh number (= q0f gbK1DDT=l0f am1)

Raf fluid Rayleigh number (=Ra/Dak)
Rep particle Reynolds number (=q0f ejmf jdp=l0f )
S0 source or sink intensity of thermal spot,

W/m3

Ta temperature, K (a = s, f)

Ti wall temperature, K (i = h,c)

U1 maximum superficial velocity at the cavity

entry, m/s

vf fluid velocity, m/s

V dimensionless superficial velocity for natural

convectionbV dimensionless superficial velocity for forced

convection

x horizontal coordinate, m

X (=x/D)

z vertical coordinate, m

Z (=z/D)

Greek symbols

am1 thermal diffusivity of saturated porous med-

ium (=km1=q0fC
0
f ), m

2/s

b isobaric thermal expansion coefficient, K�1

c (=dp/D)

e porous medium porosity

Ha dimensionless temperature (a = s, f)

j (=ro/ri)

k (=k0f =km1)

l0f fluid viscosity, Pa s

m (=k0s=km1)

q0f fluid density, kg/m3 (a = s, f)

r heat dispersion around the peak

W streamline

Subscripts

c cold wall

f fluid phase

h hot wall

m properties of composite (solid and fluid)

s solid phase

w wall

1 any property far from cavity walls

Superscript

0 property of pure species
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since the circuit densities are significantly increased with

inevitable higher power dissipation, the internal offset fin

structures may be modeled as a saturated non-isother-

mal porous medium [8]. Therefore, for design purposes,

heat transfer limitations must be appropriately evalu-

ated in relation to the relative position of hot and cold

spots. In this sense, although natural convection can

be used as a mean of thermal control providing a vibra-

tion-free environment in contraposition to forced con-

vection [9], one observes that flow paths are rather
complex around thermal spots, affecting thus the inten-

sity of heat transfer and placing the need to seek for

the optimal cooling configuration.

In a wider context of practical situations, rather dif-

ferent from that described above, it is also clear that

natural and mixed convections of a fluid saturating a

porous medium has received much attention in the liter-

ature at present [10,11] mainly without the inclusion of

heat sources; those including thermal spots are signifi-

cantly a few less [2,12–14]. In particular, the presence
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of hot and cold spots in the porous medium places rela-

tively new problems to be considered and solved. In fact,

typically these thermal spots are generated in only one of

the two phases involved (the fluid or the solid) or alter-

natively it can be the results of a complex mechanism

involving heat generation and heat transfer at the

solid–fluid interface. As mentioned above, there are

many practical situations where the heat source is placed

in the solid particles and heat emanates from them. It is

precisely in this type of systems where the use of two-

field porous media models becomes important for design

purposes because the assumption of local thermal equi-

librium is not valid [12,15].

The two-field model (2-F model) for a rigid porous

matrix studied previously [16] is used here to avoid the

condition of local thermal equilibrium usually valid for

other situations already analyzed in the literature (see,

for example, [17]). It is shown here that the intensity

of the two types of thermal spots significantly control

the heat transfer problem in the configurations proposed

in this study. Also we evaluate the flow patterns under

different configurations of thermal spots to obtain a

rationale of flow movement and control. With these

purposes, two cavities are studied: (1) rectangular por-

ous cavity (RPC) of square cross section with a very

large axial length perpendicular to the gravity vector

[Fig. 1(a)] and (2) annular porous cavity (APC) com-

prised by two vertical concentric cylindrical walls [Fig.

1(b)]. In both cases, when natural convection is consid-

ered, the upper and lower walls are adiabatic and the

lateral walls (inner and outer walls for the APC) are kept

at constant temperatures, which may have either the

same or different values. When mixed convection (natu-

ral and forced) is considered, the temperature of fluid

entering to the cavity is assumed uniform and the

temperature at the exit of the cavity approaches its final

value asymptotically along the axial coordinate.

In relation to the arrangements of thermal spots in

the cavities, one observes that there is a high number

of configurations possible, increasing it with the number

of spots. Therefore, for the purposes of this study we
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Fig. 1. Scheme of porous medium cavities: (a) rectangular p
choose different configurations of four spots. Of course,

a larger number of spots greater than four is prone to be

analyzed through periodically placed boundary condi-

tions as observed in Section 3.

The outline of this work is as follows: first, we present

briefly the 2-F model including thermal spots and

boundary conditions. Then, this model is applied to

the RPC and APC with different configurations of four

thermal spots, where natural and mixed convections

may be present. After the analysis and discussion of

the main numerical results, rules allowing one to infer

qualitatively the flow patterns in the porous cavity due

to the thermal spots are established.
2. Theoretical analysis

The 2-F model [15,18,19] uses the balance equations

of momentum and energy to study natural and mixed

convections in a porous medium saturated with a

Newtonian fluid. This model considers the Darcy–

Brinkman–Forchheimer terms for the steady-state

movement of the fluid phase and includes a variable

porosity near the wall containing the porous medium.

Also, the model considers dispersion phenomena due

to fluid convective fluctuations in the interstices of the

solid matrix, which are assumed isotropic. Since the

energy balance is required for both solid and fluid

phases, an exchange of heat between phases is included

[12].

2.1. Balance equations

Following previous works for natural convec-

tion [16,20] here a more general version of the result-

ing dimensionless model is presented, which may be

used to study both natural and mixed convection

problems with thermal spots in the RPC andAPC consid-

ered above. Therefore, the dimensionless mass balance is,

r � bV ¼ 0 ð1Þ
     ro

L 
 D 

Fluid-saturated 
porous medium

  APC 
(b)

orous cavity (RPC), (b) annular porous cavity (APC).
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The dimensionless momentum of the fluid phase is

expressed

DaPe
ePrf

bV � r bV
¼ GrPrf

Pe
eHfk� e

/1

1þ /2Fs
Pe
Prf

j bV j
� �bV þ Dar2 bV

ð2Þ

and two dimensionless energy balances must be formu-

lated; thus,

kPe bV � rHf ¼ r � ½ðkeI þ k�
dÞ � rHf � � HðHf �HsÞ

ð3Þ

pertains to the fluid, and

r � ½mð1� eÞfcrHs� þ HðHf �HsÞ þ
Xn

i¼1

Gi ¼ 0 ð4Þ

is satisfied by the solid phase, where n thermal sources

and sinks are included through Gi. In Eqs. (1)–(4),

dimensionless numbers are appropriately defined to de-

scribe mixed convection consistently with previous

works. Also, for a closed cavity, where the fluid is mov-

ing by natural convection only, the characteristic veloc-

ity used is am1/D.

The two energy balances are expressed through the

dimensionless temperatures of the fluid Hf ¼ T f�T c

DT and

the solid Hs ¼ T s�T c

DT , where DT = Th � Tc. Here Th and

Tc are used to designate the temperature of hot and cold

cavity walls, respectively. For the cases in which both

vertical walls of the RPC and APC cavities are at the

same temperature, DT is defined as the difference be-

tween Tmax and Tw; where Tmax is the higher tempera-

ture within the porous cavity and Tw is the wall

temperature. For cold spots (heat sinks) DT is defined,

however, with the Tmin counterpart. In addition, in

Eq. (2) the dimensionless functions /1 ¼ KðeÞ
K1

and

/2 ¼ bðeÞ
b1

tend to one far away from the cavity walls.

The dimensionless numbers in Eqs. (1)–(4) and those

used to describe natural convection in a previous work

[20] are related through the following simple expres-

sions: rv = Pek and Ra = GrPrf k. When bV and these

relations are introduced into Eqs. (1)–(4), the dimen-

sionless model for natural convection is consistently ob-

tained [16].

In the balance equations, e is the porosity that varies

near the cavity walls according to e ¼ e1½1þ A expð� Bn
dp
Þ�

[21], where A and B are constants and n is the normal

distance from any wall. The 2-F model involves the stag-

nant thermal conductivity of the mixture km = kf + ks as

defined in [20] and [22]. Also, in the energy balances

[Eqs. (3) and (4)] of the fluid and solid phases, H is

the Sparrow number [12], where hf is obtained from pre-

vious works [20,23] and hs ¼ k0s=lc includes a character-

istic porous medium length lc that is of the order of dp/10
for spheres [24]. In Eq. (3), the dimensionless dispersion

tensor k�
d ¼ clajV jI is defined according to Mercer et al.

[25], where l is the Van Driest function [26].

In this work thermal spots are simulated through

Gaussian functions placed as thermal sources and sinks

in the energy balance of the solid phase [Eq. (4)]. There-

fore each thermal spot in the porous medium may be de-

scribed through the following dimensionless expression

(subscript i is omitted):

GðX ; ZÞ ¼ G0

2pr2
exp � 1

2

X � X 0

r

� �2
( )

� exp � 1

2

Z � Z0

r

� �2
( )

ð5Þ

where X0 and Z0 are the dimensionless coordinates of

the center, G0 is the thermal spot intensity and r is the

heat dispersion around the peak thermal intensity.

It is worth to mention that several authors used a

modified Rayleigh number that included the heat source

[2,14]. In this work a dimensionless number in the source

term of the solid energy balance expressed G0 ¼ S0D2

DTkm1
is

defined, which resulted similar to that defined by Alex

et al. [13]. Here S0 is the dimensional source (or sink)

intensity of the thermal spot. Also, G0 multiplied by

the Rayleigh number is proportional to the dimension-

less number used by Jiménez-Islas et al. [2] and Kim

et al. [14].

In previous works, point sources were considered as a

good approximation to an intensity G0 distributed in a

finite domain of the solid matrix [12], and several studies

involved an uniform heat generation in a packed bed

[2,13,14]. Other interesting works have placed the heat

sources at the walls of the porous cavity [9,27].

2.2. Boundary conditions

When natural convection is present in the porous

cavities only, the non-slip velocity condition impliesbV ¼ 0 at vertical and horizontal walls. The temperature

fields must satisfy the adiabatic condition at horizontal

walls (Z = 0 and 1) through oHf

oZ ¼ 0, and oHs

oZ ¼ 0, while

Hf = Hs = 1 for the hot wall (X = 0), and Hf = Hs = 0

for the cold wall (X = 1). On the other hand,Hf = Hs = 0

is considered for the particular case the vertical walls are

at the same temperature Tw, consistently with the tem-

perature normalization discussed above.

For the case of mixed convection considered in the

RPC only, the upper and lower boundary conditions

of the cavity must be modified. In fact, the velocity

field entering the porous cavity has the following

expression:

bV z ¼
cosh

ffiffiffiffi
e
Da

p
X � 1

2

� �h i
� cosh 1

2

ffiffiffiffi
e
Da

ph i
1� cosh 1

2

ffiffiffiffi
e
Da

ph i ð6Þ
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Fig. 2. Heat fluxes of hot and cold walls as function of the

intensity of thermal spot (G0 > 0 for source and G0 < 0 for

sink). Parameters are: Raf = 1.36 · 108, Da = 10�5, Prf = 4.60,

L/D = 1, k = 0.747, e1 = 0.40, A = 0.30, B = 7.5, c = 0.1 and
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which is again recovered asymptotically at the exit of

the cavity. This expression is obtained by solving the

one-directional problem, when the porosity variation

near the vertical walls at the inlet is neglected (see,

for example, [28]) and the Forchheimer number is

considered very small. This is an appropriate and sim-

ple approximation for the purposes of placing more

realistic boundary conditions. The velocity field at verti-

cal walls (non-slip) is the same as the case of pure

natural convection, but the temperature field is

required to satisfy Hf = Hs = 0 at Z = 0 (entrance) and
o2Hf

oZ2 ¼ 0 and o2Hs

oZ2 ¼ 0 at Z = 1 (exit) while the vertical

walls are kept at constant temperature giving Hf =

Hs = 0.

The resulting model [Eqs. (1)–(4)] is expressed in

finite differences and solved numerically by following

the procedure described in our previous work [20].
a = 0.1.
3. Results and discussion

Following our previous comments in the introduc-

tion section, we present relevant numerical results con-

cerning several configurations of hot and cold spots in

the RPC and APC. This discussion is carried out in

two sections. In Section 3.1, only cases of natural con-

vection are considered, while in Section 3.2 cases associ-

ated with mixed convection are analyzed, which are

indeed useful to understand the previous ones. In fact,

natural convection has a characteristic velocity defined

indirectly through thermo-physical properties and, of

course, it may not be controlled in a direct manner. In

this section, we describe phenomena in detail and their

physical explanations are then proposed.

3.1. Natural convection

3.1.1. One thermal spot in the RPC with vertical

walls at different temperatures

With the purpose of characterizing the flow and heat

transfer phenomena that occur in a porous medium with

thermal sources and sinks, first we consider the case

where one thermal spot is placed at the center of the

RPC while the vertical walls are at different tempera-

tures. A basic flow is obtained when there is not any

thermal spot in the cavity and the fluid movement is

the result of natural convection induced by the temper-

ature difference of the vertical walls (see, for instance,

[29]). Therefore, when a hot spot is placed at the cavity

center, a substantial distortion of streamlines in relation

to those of the basic flow is observed. Since the system is

in steady-state, the heat entering and leaving the RPC is

exactly balanced with the heat exchanged through the

thermal spots inside the cavity. The heat fluxes at the

hot Qh and cold Qc vertical walls in dimensionless form,

are:
Qh ¼
qhD

km1DT

¼ �
Z 1

0

ke
ohf
oX

þ mð1� eÞfc
ohs
oX

� �
dZ at X ¼ 0 ð7Þ

Qc ¼
qcD

km1DT

¼
Z 1

0

ke
ohf
oX

þ mð1� eÞfc
ohs
oX

� �
dZ at X ¼ 1 ð8Þ

Eqs. (7) and (8) are defined with the convention that the

heat flux is positive when thermal energy is entering the

cavity, while a negative value indicates the opposite. Fig.

2 shows Qh and Qc as a function of the intensity of ther-

mal spot G0. When G0 is negative, a heat sink exists in

the porous cavity and the heat leaving the cold wall is

less than that entering through the hot wall. The oppo-

site is true when G0 > 0. In particular when the intensity

of the thermal spot is significant, critical values Gþ
0 and

G�
0 are found where an inversion of the heat flux sign in

one of the vertical walls is expected. One also concludes

that Qh = �Qc when sources and sinks are not present in

the porous cavity only.

The above discussion concerning the macroscopic

heat balance in the RPC is also relevant to prove at each

numerical run the consistence of the computational code

generated in this work. In fact, the difference between

the heat leaving and entering the RPC shall be equal

to the heat exchanged through the thermal spot with

intensity G0, which is obtained by integrating G(X,Z)

within the whole volume of the porous cavity.

3.1.2. One thermal spot in the RPC with vertical

walls at the same temperature

In this case, the fluid movement is induced by the

presence of one thermal spot (source or sink of heat)



(a)  (b)

Fig. 3. (a) Solid phase isotherms (0 6 Hs 6 1) and (b) streamlines (�1.20 6W 6 1.20) for RPC with a hot spot at the center.

Parameters are the same as in Fig. 2. The hot spot intensity is G0 = 188.80. Spot heat dispersion is r = 2.2.
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in the porous cavity. In this sense, Fig. 3(a) shows a hot

spot placed at the center of the RPC. The solid-phase

isotherms forming a sharp thermal gradient at the

RPC center are concentric with the hot spot. There

exists also a critical temperature below which the iso-

therms become symmetrically open up. Temperatures

of the solid phase are higher than Tw = Th = Tc. Fig.

3(b) shows that the streamlines for this case present

two symmetric vortices; the right one is rotating clock-

wise while the left one is counterclockwise. The vortex

centers are placed slightly above the horizontal central

plane of the cavity.

When a heat sink is in place of the heat source, the

vertically inverted pictures (180� rotation) of isotherms

and streamlines are obtained. Therefore, this situation

presents vortex rotations that are the opposite of those

corresponding to the hot spot (not shown here). Further,

in this case the temperatures in the solid phase are less

than Tw, and the vortex centers are placed a little below

the horizontal central plane of the cavity.

Before ending this section, it is appropriate to discuss

briefly the effect of parameters Da,c = dp/D and L/D on

numerical solutions, having into account that other

dimensionless numbers pertain to typical systems com-

posed by water and glass or ceramic beads. For this pur-

pose, one thermal spot in the RPC with vertical walls at

the same temperature is considered. Numerical results

show the following: (a) when Da is increased from

10�5 to 10�2, the fluid velocity passing through the hot

spot is also increased. Therefore inertial effects push

the centers of the two vortices upward and the fluid

moves faster near the vertical walls generating very

sharp momentum and thermal boundary layers (this ef-

fect is also observed, for instance, in Figs. 5 and 7); (b)

when c takes values from 0.01 to 0.2 the effect on ther-

mal and flow patterns are similar to those found for

increments of Darcy number; (c) when L/D is changed
from 0.5 to 1.5 one observes that the number of vortices

are the same as in the squared cavity and the flow pat-

terns accommodate conformably to the new aspect ratio

of the porous cavity.
3.1.3. Several thermal spots in the RPC with vertical

walls at the same temperature

Here we are concerned with the presence of several

thermal spots in the RPC and the possibility of control-

ling the flow direction through the variation of places

and intensities of cold and hot spots. The vertical walls

are at the same temperature, and the horizontal walls

are adiabatic. As elementary cell for the flow domain,

four thermal spots are studied in the porous matrix,

the center of which are placed at the following coordi-

nates values (X,Z): (L/4,D/4), (L/4,3D/4), (3L/4,D/4)

and (3L/4,3D/4). Fig. 4 presents a scheme of the five

configurations selected as being relevant to illustrate

basic phenomena associated with the heat transfer prob-

lem, which of course, pertains to a high number of

possibilities that cannot be all analyzed in this work.

These configurations are numbered from 1 to 5 and dis-

cussed below.
3.1.3.1. Configuration 1. Four hot spots (heat sources)

of the same intensity are considered. Fig. 5(a) shows

the isotherms of the solid phase. In the cavity zone,

where the two upper spots are placed, the temperature

values are relatively high indicating a local heating due

to the presence of the upper adiabatic wall. The two

lower spots generate a similar effect but the temperatures

in this zone are lower than those of the upper one due to

the colder fluid coming from below. In fact, this fluid

was previously cooling along the isothermal vertical

walls. Fig. 5(b) shows the corresponding streamlines

where one observes the fluid rises through the hot



  Configuration 1 Configuration 2      Configuration 3 

  Configuration 4  Configuration 5   

  H        H

  H        H

  H        H

  C        C

  H        C

  H        C

  C        H

  H        C

  C        C

  H        H

Fig. 4. Scheme showing the configurations of four thermal

spots placed in the porous cavity analyzed in this work. Letters

H and C refer to hot and cold spots, respectively. Thermal spots

are placed at the center of each cell resulting from the division

in four equal parts of the transversal section of the porous

cavity.

3300 R.A. Bortolozzi, J.A. Deiber / International Journal of Heat and Mass Transfer 48 (2005) 3294–3307
spots and then fall down near the vertical walls at a

temperature Tw. Thus in the porous medium two sym-
(a)

(c)

Fig. 5. Numerical solutions for Configuration 1 (Fig. 4) with four hot

and (b) streamlines (�1 6 W 6 1) for RPC; (c) solid phase isotherm

Also, G0 = 47.20 and r = 2.20. Other parameters are the same as in F
metric vortices are established, with opposite rotating

direction as already described in Fig. 3(b) above.

When the same configuration of thermal spots is con-

sidered in the APC, the effect on the flow patterns of the

radial variation of annular concentric areas is intro-

duced. It is thus observed that the APC modifies sub-

stantially the isotherms and the streamlines in relation

to those corresponding to the RPC. The symmetry of

thermal and flow patterns is lost due to the APC geom-

etry. Therefore, an intensive vortex flow is established

on the right hand side of the APC [Fig. 5(d)], which is

interacting directly with the four hot spots, while the

left vortex is of a rather weak intensity, and it is

driven mainly by the two left hot spots placed in the

APC.

3.1.3.2. Configuration 2. In this case the hot spots are

placed in the upper half space of the cavity while the

cold spots are below them (Fig. 4). The four spots have

the same absolute value of intensity (signs are negative

for sinks and positive for sources). The temperature field
(b)

(d)

spots of equal intensity: (a) solid phase isotherms (0 6 Hs 6 1)

s (0 6 Hs 6 1) and (d) streamlines (�0.3 6 W 6 1.4) for APC.

ig. 2. For APC, j = 5.338.
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thus obtained is depicted in Fig. 6(a). The streamlines

are presented in Fig. 6(b), where one observes the pres-

ence of four vortices. In the upper part, the fluid recircu-

lates counterclockwise at the left, and the opposite at the

right. In addition the fluid moves upward mainly

through the hot spots and the central zones of the cavity,

then moves downward from outside of the hot spots and

near the vertical walls. From the middle plane down-

ward the opposite fluid behavior is found. Thus a stag-

nation point is formed at the center of the cavity [see

Fig. 6(b)] generating a pure stretching deformation.

This thermal spot configuration is also analyzed in

the APC [Fig. 6(c) and (d)] and once more the symmetry

of thermal and flow patterns of the RPC are lost due to

geometry. When one compares these results with those

of Fig. 5(c) and (d), the differences found are significant;

in fact, on the right hand side of the APC two intensive

vortices are found interacting with the four thermal

spots. Two other vortices of rather weak intensity are
(a)

(c)

Fig. 6. Numerical solutions for Configuration 2 (Fig. 4) with tw

(�0.8 6 Hs 6 1) and (b) streamlines (�0.50 6 W 6 0.50) for RPC; (

(�0.55 6 W 6 0.55) for APC. Spot intensities are: G0 = 47.20 (hot s

parameters are the same as in Fig. 2. For APC, j = 5.338.
placed on the left, which are driven by the left thermal

spots.

3.1.3.3. Configuration 3. Two cold spots are in the

upper part of the cavity and two hot spots are below

(Fig. 4). In addition two different situations are ana-

lyzed: one considers that the absolute values of the four

intensities are equal (even intensities) and the other in-

volves hot spots with a higher absolute value of the heat

intensity than that of the cold spots (uneven intensities).

For even intensities [see isotherms in Fig. 7(a)] the fluid

is moving in the cavity similarly to Configuration 2, but

the direction of rotation of the four vortices are exactly

the opposite [compare Fig. 6(b) and Fig. 7(b)]. The rel-

evant changes are found, however, with the situation

involving uneven intensities [Fig. 7(c) and (d)]. Thus,

starting from the center of the lower part of the cavity

[Fig. 7(d)], the hot spots yield a significant upward flow

that collides with the cold spots and channels toward the
(b)

(d)

o hot spots and two cold spots: (a) solid phase isotherms

c) solid phase isotherms (�0.9 6 Hs 6 1) and (d) streamlines

pots or sources) and G0 = �47.20 (cold spots or sinks). Other



(a) (b)

(c) (d)

Fig. 7. Numerical solutions for Configuration 3 (Fig. 4) with two cold spots and two hot spots in the RPC: (a) solid phase isotherms

(�0.9 6Hs 6 1); (b) streamlines (�0.45 6W 6 0.45) for G0 = 47.20 (sources) and G0 = �47.20 (sinks); (c) solid phase isotherms

(�0.3 6Hs 6 1) and (d) streamlines (�0.60 6 W 6 0.60) for G0 = 47.20 (sources) and G0 = �23.60 (sinks). Other parameters are the

same as in Fig. 2.
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cavity center. Then, the top adiabatic wall stops the

fluid, which must fall down obliquely through the cold

spots. When leaving the cold spots, the fluid is repelled

by the hot spots turning toward the vertical walls and

falling down with a sharp momentum boundary layer

along them [see details in Fig. 7(d)], to reach then the

lower adiabatic wall where the circulation loop reini-

tiates. The hot-spot-recirculation zones confining the

other part of fluid are significantly larger than those cor-

responding to the cold spots. From this configuration, it

is clear that one may form very subtle fluid trajectories

in a porous medium by combining different configura-

tions and intensities of thermal spots.

3.1.3.4. Configuration 4. In this particular case, the two

hot spots are on the left and two cold spots are on the

right of the RPC (Fig. 4). Fig. 8(a) shows that the heat

propagates upwards from the hot regions while this sit-

uation is inverted around the cold spots. The resulting

flow is observed in Fig. 8(b) where a big vortex is formed
almost occupying the whole RPC. The ascending part

of this vortex moves through the hot spots while the

descending portion of the fluid moves through the cold

spots. In addition, the vortex is complemented with

two weak vortices diagonally opposed, which are rotat-

ing in the counterclockwise direction. For this particular

situation the moment boundary layers observed on the

vertical wall of the previous cases are not any more pres-

ent as a consequence of the dumping effect introduced

by the diagonally opposed small vortices. It should be

pointed out that this thermal configuration does not give

symmetric thermal and flow patterns, despite the study

is carried out in the RPC.

3.1.3.5. Configuration 5. Before the discussion of some

important results from the previous sections, we con-

sider Configuration 5 presented in Fig. 4, where cold

and hot spots are placed diagonally opposed, respec-

tively, in the RPC. The four spots have the same abso-

lute value of thermal intensity. Fig. 9(a) shows that the



(a) (b)

Fig. 8. (a) Solid phase isotherms (�1 6 Hs 6 1) and (b) streamlines (�0.20 6 W 6 1.20) for RPC with two hot spots and two cold spots

(Configuration 4—Fig. 4). Spot intensities are: G0 = 47.20 (sources) and G0 = �47.20 (sinks). Other parameters are the same as in

Fig. 2.

(a) (b) 

(c) (d) 

Fig. 9. Numerical solutions for Configuration 5 (Fig. 4) with two cold spots and two hot spots in RPC: (a) solid phase isotherms

(�0.8 6 Hs 6 1); (b) streamlines (�0.6 6 W 6 0.6) for G0 = 47.20 (sources) and G0 = �47.20 (sinks); (c) solid phase isotherms

(�0.3 6 Hs 6 1) and (d) streamlines (�0.45 6 W 6 0.50) for G0 = 47.20 (sources) and G0 = �23.60 (sinks). Other parameters are the

same as in Fig. 2.
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RPC has four zones involving isothermal lines. These

thermal zones yield, however, six vortices [Fig. 9(b)]

where the circulating directions are alternated (the upper

left vortex is clockwise). There are two big central vorti-

ces and four lateral weak vortices in the RPC. When the

configuration involves the same location of thermal

spots, but the hot spots have a higher intensity than that

of the cold spots, a zone of high temperature is observed

covering the diagonal of the RPC from lower left corner

to upper right corner [see Fig. 9(c)]. Interesting is the

fact that the fluid is channeling through this high tem-

perature zone [Fig. 9(d)] diagonally from left to right

to turn back looking for the cold spots. The six vortices

of the previous configuration are reduced now to four

vortices and a high interaction between thermal spots

is present. Despite the flow patterns of Fig. 9(b) and

(d) belong to the same thermal configuration, one finds

that the corresponding flow fields are significantly differ-

ent from one another due to the effect of the thermal

spots intensities. The opposite case (increasing the inten-

sity of cold spots) yields a similar situation (not pre-

sented here) but the diagonal for fluid channeling is

perpendicular to that one of the case already discussed.

It is clear here that the natural convection flow pat-

terns generated by hot and cold spots either in the

RPC and the APC may be quite complex mainly

depending on the configuration of the thermal spots

and their intensities. In addition the number of combina-

tions, and hence of phenomenological situations are very

high and rather tedious to be analyzed one by one. In

addition they are rather difficult to infer qualitatively

from the physical point of view, at least some simple

physical criteria are established to guide our intuition

in order to be able to visualize these flow patterns with-

out complex numerical calculations. These criteria of

course will give us a tool for design purposes as pointed

out in the introduction section. In this sense, we found

that the way to visualize these criteria is to study numer-

ically the mixed convection in the RPC. From these re-

sults, several practical rules in terms of fluid attractors

and fluid repellers may be obtained by changing the

intensity of the forced convection. Thus, when forced

convection is absent, the natural convection system is

recovered; on the other hand, by increasing substantially

forced convection its naturally occurring counterpart is

minimized. What is more important here is the fact that

the fluid will move upward through hot spots and down-

ward through cold spots independently from the type of

the dominant convection, as it is visualized in the Sec-

tion 3.2.

3.1.4. Flow pattern similarities with other porous

medium systems

Before closing Section 3.1, it is interesting to point

out that the flow patterns found in a porous cavity

heated from below (see, for instance, [30], for the Bénard
problem in porous media) are similar to those of a hor-

izontal sequence of alternating hot and cold spots placed

between the upper and lower adiabatic walls according

to results reported in Figs. 8 and 9(a) and (b). To achieve

this configuration one is naturally introducing a condi-

tion of periodicity on the lateral walls of the porous cav-

ity. In addition, following to this result, one may be

interested to place two layers with alternating hot and

cold spots and observes that two cases emerge: (1) if

the thermal spots of equal sign are placed one above

the other, the results are the existence of long vortices

involving each one four thermal spots (two cold and

two hot) moving from the lower to the upper boundary

through the hot spots and conversely through the cold

spots. (2) If the thermal spots of different signs are

placed one above the other, the streamlines follow the

patterns proper of each layer (Bénard type) and the vor-

tices are of course of the size allowed by each layer.

Thus, the flow situation is similar to several Bénard lay-

ers one above the other with the vortices rotating as if

they are placed in a ‘‘gear box’’. Finally, when one com-

pares the situations involving a configuration with the

periodicity analyzed above and that with the same con-

figuration but with the lateral barriers placed (the lateral

isothermal walls are now considered) the conclusion is

that the flow patterns are quite the same except near

the barriers where half of the vortices are observed due

to their presence.

Another case where flow patterns are similar with the

results of the present work is thermovibrational heat

transfer [31]. In fact the temporal evolution of the vorti-

ces structure found for thermovibration in a rectangular

porous enclosure may be compared to a steady-state se-

quence of different configurations of hot and cold spots.

Thus, each time of the development of the thermovibra-

tional phenomenon (Fig. 87, p. 149 of Ref. [31]) may be

compared with Fig. 7(b) discussed above. In fact, a

squared porous cavity subjected to thermovibration gen-

erates four vortices of the size of 1/4 of the cavity extend.

Increasing the time, the number of vortices is reduced

until only one vortex remains in the steady-state. This

situation can be compared to configurations 3 and 4 of

our Fig. 7(b) and Fig. 8(b). The flow pattern changes

occurring in thermovibrational convection are associ-

ated with the evolution of the temperature fields in the

solid matrix of the porous medium. In fact, at short

times, when the fluid receive heat from below, the system

response behaves as that represented in Fig. 7(b) with

configuration 3, where two hot spots are below and

two cold spots are above. For a later time, the fluid

movement transfers heat to the upper part of the cavity,

which yields a gradual change of the temperature field.

This phenomenon generates the diagonal interaction of

vortices: two vortices fuse into a bigger one and the

two ones remaining are diminishing in size at the corner

of the cavity until they disappear.



(a)

(b)

(c)

Fig. 10. Streamlines in RPC with a hot spot in the cavity center

and fluid entering from below: (a) Pe = 0.0134 and �0.50 6

W 6 0.50; (b) Pe = 0.0335 and �1.25 6W 6 1.25; (c) Pe =

0.0670 and �2.40 6 W 6 2.40. Other parameters are: Gr = 30,

Da = 10�5, Prf = 4.60, L/D = 1, k = 0.747, e = 0.40, c = 0.1, a =

0.1, G0 = 188.80, r = 0.80.
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3.2. Mixed convection

As mentioned above, here we consider that fluid is

entering in the RPC from below at a given flow rate

[see Eq. (6)]. To achieve the purpose of this section

and also to be brief enough, only two cases are analyzed:

one has a hot spot placed at the center of the RPC, while

the other involves instead a cold spot. In addition the

flow rate is varied from zero (natural convection) to val-

ues for which forced convection is predominant.

3.2.1. One hot spot in the RPC with vertical walls at

the same temperature

This case is similar to that reported in Fig. 3. Never-

theless, when the flow rate is different from zero, one ob-

serves a decrease of the size of the two vortices present in

the cavity and the appearance, of course, of open

streamlines connecting the inlet and outlet of fluid in

the cavity [Fig. 10(a)]. By increasing the flow rate even

more, the vortex sizes become smaller and the fluid is

significantly channeling through the cavity center [Fig.

10(b)]. One may say that the hot spot is an attractor

of the fluid moving upward, against the gravity vector.

At high flow rates the two vortices disappear and the

streamlines become more parallel (sweeping off the effect

of the hot spot) due to the intense convection [Fig.

10(c)]. Further, to obtain a situation similar to that

shown in Fig. 10, for instance, the intensity of the heat

spot must be increased by a factor of around twelve

when Pe is 10 times greater. Thus, the phenomenon

manifestation depends mainly on the relative values be-

tween the magnitudes of Peclet number and intensity of

thermal spot.

In relation to this part of our study it is appropriate

to consider the work of Lai et al. [27], where the flow of

a Newtonian fluid through a porous cavity with a ther-

mal source in the lateral boundary is investigated. This

zone of higher temperature than the rest of the porous

cavity yields flow patterns similar to those found for a

hot spot in Fig. 10, of course, as long as one takes into

account the geometrical differences pertaining to each

case. Thus the common result is that streamlines tend

to get together around the hot zone due to the attraction

of the fluid moving upward (see also point b in relation

to Lai et al. work [27]).

3.2.2. One cold spot in the RPC with vertical walls

at the same temperature

In this case, when the flow rate is null, natural con-

vection generates again two vortices that circulate in

opposite directions with respect to the previous case of

a hot spot. Thus fluid falls down through the cavity cen-

ter and moves upward near the lateral walls, as it was al-

ready discussed in relation to Fig. 3. Once more, when

fluid enters the cavity from below, the size of the sym-

metric vortices decreases and they are surrounded by
open streamlines (Fig. 11). Nevertheless, a significant

difference is observed in the flow patterns pertaining to

the cold spot from those of the hot spot: the cold spot



(a)

(b)

(c)

Fig. 11. Streamlines in RPC with a cold spot in the cavity

center and fluid entering from below: (a) Pe = 0.0134 and

�0.50 6 W 6 0.50; (b) Pe = 0.0335 and �1.25 6 W 6 1.25;

(c) Pe = 0.0670 and �2.50 6 W 6 2.50. Parameters are the

same as in Fig. 10, except G0 = �188.80.
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is a repeller of the fluid moving upward (against the

gravity vector) as clearly illustrated through Fig. 11.

At high flow rates the two vortices tend to disappear
once more [Fig. 11(c)] and the streamlines become more

parallel (sweeping off the effect of the cold spot) due to

the intense convection.

By considering the work of Lai et al. [27] again,

where the flow patterns followed by the fluid entering

the porous enclosure from above are shown (in the

direction against to the gravity vector) but still in rela-

tion to a hot spot at the boundary, it is found yet a

more interesting analogy with our results. In fact this

situation is similar to the fluid repulsion of the cold spot

of our Fig. 11. Thus, it is clear that this discussion

reaffirms the results presented above in the sense that

the four mixed convection problems related to one

thermal spot and the flow direction with respect to the

gravity vector can be resumed in only two basic

problems, as it is described in our Section 4, points (a)

and (b). They are: the repulsion and the attraction

phenomena.
4. Conclusions

The present study provides the theoretical and phe-

nomenological understanding of how the temperature

and velocity fields are generated either by natural and

mixed convections in the RPC and APC with thermal

spots. The summary of conclusions that allows one to

interpret isotherms and streamlines in the porous cavity

are: (a) a hot spot is an attractor of the fluid moving up-

ward (against the gravity vector) and repels the fluid

moving downward. (b) A cold spot repels the fluid mov-

ing upward (against the gravity vector) and attracts the

fluid moving downward. (c) Both effects apply to natural

as well as to mixed convection. (d) The intensities of

thermal spots (negative for cold spot or sink, and posi-

tive for hot spot or source), which can differ in absolute

value from one type another, is controlling significantly

the channeling and both thermal and momentum

boundary layers of fluid throughout the porous cavity.

Thermal intensities together with configurations of ther-

mal spots control the fluid movement in the porous cav-

ity. (e) Flow patterns in the RPC differ significantly from

those of the APC for the same configuration and inten-

sity of thermal spots. (f) There exist flow situations gen-

erated by different means (for instance, Bénard problem

and thermovibrational heat transfer) which are similar

to those given by configurations of thermal spots in

the porous cavity.
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